
LDAP at Lightning Speed

Howard Chu
CTO, Symas Corp. hyc@symas.com

Chief Architect, OpenLDAP hyc@openldap.org
2015-05-28

mailto:hyc@symas.com
mailto:hyc@openldap.org

2

OpenLDAP Project

● Open source code project
● Founded 1998
● Three core team members
● A dozen or so contributors
● Feature releases every 12-18 months
● Maintenance releases as needed

3

A Word About Symas

● Founded 1999
● Founders from Enterprise Software world

– platinum Technology (Locus Computing)

– IBM

● Howard joined OpenLDAP in 1999
– One of the Core Team members

– Appointed Chief Architect January 2007

● No debt, no VC investments: self-funded

4

Intro

● Howard Chu
– Founder and CTO Symas Corp.

– Developing Free/Open Source software since
1980s

● GNU compiler toolchain, e.g. "gmake -j", etc.
● Many other projects...

– Worked for NASA/JPL, wrote software for Space
Shuttle, etc.

5

Topics

(1) Background

(2) Features

(3) Design Approach

(4) Internals

(5) Special Features

(6) Results

6

(1) Background

● API inspired by Berkeley DB (BDB)
– OpenLDAP has used BDB extensively since 1999

– Deep experience with pros and cons of BDB design
and implementation

– Omits BDB features that were found to be of no benefit
● e.g. extensible hashing

– Avoids BDB characteristics that were problematic
● e.g. cache tuning, complex locking, transaction logs,

recovery

7

(2) Features

LMDB At A Glance
● Key/Value store using B+trees
● Fully transactional, ACID compliant
● MVCC, readers never block
● Uses memory-mapped files, needs no tuning
● Crash-proof, no recovery needed after restart
● Highly optimized, extremely compact

– under 40KB object code, fits in CPU L1 I$

● Runs on most modern OSs
– Linux, Android, *BSD, MacOSX, iOS, Solaris, Windows, etc...

8

Features

● Concurrency Support
– Both multi-process and multi-thread

– Single Writer + N readers
● Writers don't block readers
● Readers don't block writers
● Reads scale perfectly linearly with available CPUs
● No deadlocks

– Full isolation with MVCC - Serializable

– Nested transactions

– Batched writes

9

Features

● Uses Copy-on-Write
– Live data is never overwritten

– DB structure cannot be corrupted by incomplete
operations (system crashes)

– No write-ahead logs needed

– No transaction log cleanup/maintenance

– No recovery needed after crashes

10

Features

● Uses Single-Level Store
– Reads are satisfied directly from the memory map

● No malloc or memcpy overhead

– Writes can be performed directly to the memory map
● No write buffers, no buffer tuning

– Relies on the OS/filesystem cache
● No wasted memory in app-level caching

– Can store live pointer-based objects directly
● using a fixed address map
● minimal marshalling, no unmarshalling required

11

Features

● LMDB config is simple, e.g. slapd

● BDB config is complex

 database mdb
 directory /var/lib/ldap/data/mdb
 maxsize 4294967296

 database hdb
 directory /var/lib/ldap/data/hdb
 cachesize 50000
 idlcachesize 50000
 dbconfig set_cachesize 4 0 1
 dbconfig set_lg_regionmax 262144
 dbconfig set_lg_bsize 2097152
 dbconfig set_lg_dir /mnt/logs/hdb
 dbconfig set_lk_max_locks 3000
 dbconfig set_lk_max_objects 1500
 dbconfig set_lk_max_lockers 1500

12

Support

● Available on all major Linux and BSD distros

● Bindings for most programming languages
– C, C++, Crack, D, Erlang, Go, Haskell, Java,

Javascript, Julia, Lua, Matlab, .Net, Objective C,
OCaml, Perl, PHP, Python, Ruby, Rust

13

(3) Design Approach

● Motivation - problems dealing with BDB
● Obvious Solutions
● Approach

14

Motivation

● BDB slapd backend always required careful,
complex tuning
– Data comes through 3 separate layers of caches

– Each layer has different size and speed traits

– Balancing the 3 layers against each other can be a
difficult juggling act

– Performance without the backend caches is
unacceptably slow - over an order of magnitude

15

Motivation

● Backend caching significantly increased the
overall complexity of the backend code
– Two levels of locking required, since BDB database

locks are too slow

– Deadlocks occurring routinely in normal operation,
requiring additional backoff/retry logic

16

Motivation

● The caches were not always beneficial, and were
sometimes detrimental
– Data could exist in 3 places at once - filesystem, DB,

and backend cache - wasting memory

– Searches with result sets that exceeded the configured
cache size would reduce the cache effectiveness to
zero

– malloc/free churn from adding and removing entries in
the cache could trigger pathological heap
fragmentation in libc malloc

17

Obvious Solutions

● Cache management is a hassle, so don't do any
caching
– The filesystem already caches data; there's no

reason to duplicate the effort

● Lock management is a hassle, so don't do any
locking
– Use Multi-Version Concurrency Control (MVCC)

– MVCC makes it possible to perform reads with no
locking

18

Obvious Solutions

● BDB supports MVCC, but still requires complex
caching and locking

● To get the desired results, we need to abandon BDB
● Surveying the landscape revealed no other DB

libraries with the desired characteristics
● Thus LMDB was created in 2011

– "Lightning Memory-Mapped Database"

– BDB is now deprecated in OpenLDAP

19

Design Approach

● Based on the "Single-Level Store" concept
– Not new, first implemented in Multics in 1964

– Access a database by mapping the entire DB into
memory

– Data fetches are satisfied by direct reference to the
memory map; there is no intermediate page or
buffer cache

20

Single-Level Store

● Only viable if process address spaces are
larger than the expected data volumes
– For 32 bit processors, the practical limit on data

size is under 2GB

– For common 64 bit processors which only
implement 48 bit address spaces, the limit is 47 bits
or 128 terabytes

– The upper bound at 63 bits is 8 exabytes

21

Design Approach

● Uses a read-only memory map
– Protects the DB structure from corruption due to stray

writes in memory

– Any attempts to write to the map will cause a SEGV,
allowing immediate identification of software bugs

● Can optionally use a read-write mmap
– Slight performance gain for fully in-memory data sets

– Should only be used on fully-debugged application
code

22

Design Approach

● Keith Bostic (BerkeleyDB author, personal email, 2008)
– "The most significant problem with building an mmap'd back-end is implementing

write-ahead-logging (WAL). (You probably know this, but just in case: the way
databases usually guarantee consistency is by ensuring that log records
describing each change are written to disk before their transaction commits, and
before the database page that was changed. In other words, log record X must hit
disk before the database page containing the change described by log record X.)

– In Berkeley DB WAL is done by maintaining a relationship between the database
pages and the log records. If a database page is being written to disk, there's a
look-aside into the logging system to make sure the right log records have already
been written. In a memory-mapped system, you would do this by locking modified
pages into memory (mlock), and flushing them at specific times (msync), otherwise
the VM might just push a database page with modifications to disk before its log
record is written, and if you crash at that point it's all over but the screaming."

23

Design Approach

● Implement MVCC using copy-on-write
– In-use data is never overwritten, modifications are

performed by copying the data and modifying the copy

– Since updates never alter existing data, the DB
structure can never be corrupted by incomplete
modifications

● Write-ahead transaction logs are unnecessary

– Readers always see a consistent snapshot of the DB,
they are fully isolated from writers

● Read accesses require no locks

24

MVCC Details

● "Full" MVCC can be extremely resource intensive
– DBs typically store complete histories reaching far back into time

– The volume of data grows extremely fast, and grows without
bound unless explicit pruning is done

– Pruning the data using garbage collection or compaction requires
more CPU and I/O resources than the normal update workload

● Either the server must be heavily over-provisioned, or updates must be
stopped while pruning is done

– Pruning requires tracking of in-use status, which typically
involves reference counters, which require locking

25

Design Approach

● LMDB nominally maintains only two versions of the DB
– Rolling back to a historical version is not interesting for

OpenLDAP

– Older versions can be held open longer by reader transactions

● LMDB maintains a free list tracking the IDs of unused
pages
– Old pages are reused as soon as possible, so data volumes

don't grow without bound

● LMDB tracks in-use status without locks

26

Implementation Highlights

● LMDB library started from the append-only btree
code written by Martin Hedenfalk for his ldapd,
which is bundled in OpenBSD
– Stripped out all the parts we didn't need (page cache

management)

– Borrowed a couple pieces from slapd for expedience

– Changed from append-only to page-reclaiming

– Restructured to allow adding ideas from BDB that we
still wanted

27

Implementation Highlights

● Resulting library was under 32KB of object
code
– Compared to the original btree.c at 39KB

– Compared to BDB at 1.5MB

● API is loosely modeled after the BDB API to
ease migration of back-bdb code

28

Implementation Highlights

size
db_bench*

text data bss dec hex filename Lines of Code

285306 1516 352 287174 461c6 db_bench 39758

384206 9304 3488 396998 60ec6 db_bench_basho 26577

1688853 2416 312 1691581 19cfbd db_bench_bdb 1746106

315491 1596 360 317447 4d807 db_bench_hyper 21498

121412 1644 320 123376 1e1f0 db_bench_mdb 7955

1014534 2912 6688 1024134 fa086 db_bench_rocksdb 81169

992334 3720 30352 1026406 fa966 db_bench_tokudb 227698

853216 2100 1920 857236 d1494 db_bench_wiredtiger 91410

Footprint

29

(4) Internals

● Btree Operation
– Write-Ahead Logging

– Append-Only

– Copy-on-Write, LMDB-style

● Free Space Management
– Avoiding Compaction/Garbage Collection

● Transaction Handling
– Avoiding Locking

30

Btree Operation

Pgno
Misc...

Database Page

Pgno
Misc...
offset

key, data

Data Page

Pgno
Misc...
Root

Meta Page

Basic Elements

31

Btree Operation

Pgno: 0
Misc...
Root : EMPTY

Meta Page Write-Ahead Log

Write-Ahead Logger

32

Btree Operation

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Write-Ahead Logger

Add 1,foo to
page 1

Write-Ahead Log

33

Btree Operation

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : 1

Meta Page

Add 1,foo to
page 1

Write-Ahead Log

Write-Ahead Logger

34

Btree Operation

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : 1

Meta Page

Add 1,foo to
page 1
Commit

Write-Ahead Log

Write-Ahead Logger

35

Btree Operation

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : 1

Meta Page

Write-Ahead Logger

Add 1,foo to
page 1
Commit
Add 2,bar to
page 1

Write-Ahead Log

36

Btree Operation

Pgno: 1
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 0
Misc...
Root : 1

Meta Page

Add 1,foo to
page 1
Commit
Add 2,bar to
page 1

Write-Ahead Log

Write-Ahead Logger

37

Btree Operation

Pgno: 1
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 0
Misc...
Root : 1

Meta Page

Add 1,foo to
page 1
Commit
Add 2,bar to
page 1
Commit

Write-Ahead Log

Write-Ahead Logger

38

Btree Operation

Pgno: 1
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Add 1,foo to
page 1
Commit
Add 2,bar to
page 1
Commit
Checkpoint

Write-Ahead Log

Write-Ahead Logger

Pgno: 1
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 0
Misc...
Root : 1

Meta Page

Pgno: 0
Misc...
Root : 1

Meta Page

39

Btree Operation

How Append-Only/Copy-On-Write Works
● Updates are always performed bottom up
● Every branch node from the leaf to the root

must be copied/modified for any leaf update
● Any node not on the path from the leaf to the

root is unaltered
● The root node is always written last

40

Btree Operation
Append-Only

Start with a simple tree

41

Btree Operation
Append-Only

Update a leaf node by copying it and
updating the copy

42

Btree Operation
Append-Only

Copy the root node, and point it at the new leaf

43

Btree Operation
Append-Only

The old root and old leaf remain as a previous
version of the tree

44

Btree Operation
Append-Only

Further updates create additional versions

45

Btree Operation
Append-Only

46

Btree Operation
Append-Only

47

Btree Operation
Append-Only

48

Btree Operation

In the Append-Only tree, new pages are always appended sequentially to
the DB file
● While there's significant overhead for making complete copies of

modified pages, the actual I/O is linear and relatively fast
● The root node is always the last page of the file, unless there was a

crash
● Any root node can be found by seeking backward from the end of the

file, and checking the page's header
● Recovery from a crash is relatively easy

– Everything from the last valid root to the beginning of the file is always pristine

– Anything between the end of the file and the last valid root is discarded

49

Btree Operation
Append-Only

Pgno: 0
Misc...
Root : EMPTY

Meta Page

50

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

51

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

52

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

53

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
Root : 3

Meta Page

54

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
Root : 3

Meta Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

55

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
Root : 3

Meta Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 6
Misc...
Root : 5

Meta Page

56

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
Root : 3

Meta Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 6
Misc...
Root : 5

Meta Page

Pgno: 7
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

57

Btree Operation
Append-Only

Pgno: 1
Misc...
offset: 4000

1,foo

Data Page

Pgno: 0
Misc...
Root : EMPTY

Meta Page

Pgno: 2
Misc...
Root : 1

Meta Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
Root : 3

Meta Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 6
Misc...
Root : 5

Meta Page

Pgno: 7
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 8
Misc...
Root : 7

Meta Page

58

Btree Operation

Append-Only disk usage is very inefficient
● Disk space usage grows without bound
● 99+% of the space will be occupied by old versions of

the data
● The old versions are usually not interesting
● Reclaiming the old space requires a very expensive

compaction phase
● New updates must be throttled until compaction

completes

59

Btree Operation

The LMDB Approach
● Still Copy-on-Write, but using two fixed root nodes

– Page 0 and Page 1 of the file, used in double-buffer fashion

– Even faster cold-start than Append-Only, no searching
needed to find the last valid root node

– Any app always reads both pages and uses the one with
the greater Transaction ID stamp in its header

– Consequently, only 2 outstanding versions of the DB exist,
not fully "multi-version"

60

Btree Operation

00

61

Btree Operation

00

62

Btree Operation

10

63

Btree Operation

10

64

Btree Operation

12

After this step the old blue page is no longer referenced by
anything else in the database, so it can be reclaimed

65

Btree Operation

12

66

Btree Operation

32

After this step the old yellow page is no longer referenced by
anything else in the database, so it can also be reclaimed

67

Free Space Management

LMDB maintains two B+trees per root node
● One storing the user data, as illustrated above
● One storing lists of IDs of pages that have been freed

in a given transaction
● Old, freed pages are used in preference to new

pages, so the DB file size remains relatively static
over time

● No compaction or garbage collection phase is ever
needed

68

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

69

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

70

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

71

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

72

Free Space Management

Pgno: 0
Misc...
TXN: 0
FRoot: EMPTY
DRoot: EMPTY

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

73

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

74

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

75

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 1
FRoot: EMPTY
DRoot: 2

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

76

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000

1,foo

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

77

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

78

Free Space Management

Pgno: 0
Misc...
TXN: 2
FRoot: 4
DRoot: 3

Meta Page

Pgno: 7
Misc...
offset: 4000
offset: 3000
txn 4,page 5,6
txn 3,page 3,4

Data Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

79

Free Space Management

Pgno: 0
Misc...
TXN: 4
FRoot: 7
DRoot: 2

Meta Page

Pgno: 7
Misc...
offset: 4000
offset: 3000
txn 4,page 5,6
txn 3,page 3,4

Data Page

Pgno: 6
Misc...
offset: 4000
offset: 3000
txn 3,page 3,4
txn 2,page 2

Data Page

Pgno: 5
Misc...
offset: 4000
offset: 3000
2,bar
1,blah

Data Page

Pgno: 1
Misc...
TXN: 3
FRoot: 6
DRoot: 5

Meta Page

Pgno: 2
Misc...
offset: 4000
offset: 3000
2,xyz
1,blah

Data Page

Pgno: 3
Misc...
offset: 4000
offset: 3000
2,bar
1,foo

Data Page

Pgno: 4
Misc...
offset: 4000

txn 2,page 2

Data Page

80

Free Space Management

● Caveat: If a read transaction is open on a
particular version of the DB, that version and
every version after it are excluded from page
reclaiming.

● Thus, long-lived read transactions should be
avoided, otherwise the DB file size may grow
rapidly, devolving into Append-Only behavior
until the transactions are closed

81

Transaction Handling

● LMDB supports a single writer concurrent with many readers
– A single mutex serializes all write transactions

– The mutex is shared/multiprocess

● Readers run lockless and never block
– But for page reclamation purposes, readers are tracked

● Transactions are stamped with an ID which is a monotonically
increasing integer
– The ID is only incremented for Write transactions that actually modify

data

– If a Write transaction is aborted, or committed with no changes, the
same ID will be reused for the next Write transaction

82

Transaction Handling

● Transactions take a snapshot of the currently valid
meta page at the beginning of the transaction

● No matter what write transactions follow, a read
transaction's snapshot will always point to a valid
version of the DB

● The snapshot is totally isolated from subsequent
writes

● This provides the Consistency and Isolation in ACID
semantics

83

Transaction Handling

● The currently valid meta page is chosen based
on the greatest transaction ID in each meta
page
– The meta pages are page and CPU cache aligned

– The transaction ID is a single machine word

– The update of the transaction ID is atomic

– Thus, the Atomicity semantics of transactions are
guaranteed

84

Transaction Handling

● During Commit, the data pages are written and
then synchronously flushed before the meta page
is updated
– Then the meta page is written synchronously

– Thus, when a commit returns "success", it is
guaranteed that the transaction has been written intact

– This provides the Durability semantics

– If the system crashes before the meta page is updated,
then the data updates are irrelevant

85

Transaction Handling

● For tracking purposes, Readers must acquire a slot in the
readers table
– The readers table is also in a shared memory map, but separate

from the main data map

– This is a simple array recording the Process ID, Thread ID, and
Transaction ID of the reader

– The array elements are CPU cache aligned

– The first time a thread opens a read transaction, it must acquire
a mutex to reserve a slot in the table

– The slot ID is stored in Thread Local Storage; subsequent read
transactions performed by the thread need no further locks

86

Transaction Handling

● Write transactions use pages from the free list before
allocating new disk pages
– Pages in the free list are used in order, oldest transaction first

– The readers table must be scanned to see if any reader is
referencing an old transaction

– The writer doesn't need to lock the reader table when
performing this scan - readers never block writers

● The only consequence of scanning with no locks is that the writer
may see stale data

● This is irrelevant, newer readers are of no concern; only the oldest
readers matter

87

(5) Special Features

● Reserve Mode
– Allocates space in write buffer for data of user-

specified size, returns address

– Useful for data that is generated dynamically
instead of statically copied

– Allows generated data to be written directly to DB,
avoiding unnecessary memcpy

88

Special Features

● Fixed Mapping
– Uses a fixed address for the memory map

– Allows complex pointer-based data structures to be
stored directly with minimal serialization

– Objects using persistent addresses can thus be
read back and used directly, with no deserialization

89

Special Features

● Sub-Databases
– Store multiple independent named B+trees in a single

LMDB environment

– A Sub-DB is simply a key/data pair in the main DB,
where the data item is the root node of another tree

– Allows many related databases to be managed easily
● Transactions may span all of the Sub-DBs
● Used in back-mdb for the main data and all of the indices
● Used in SQLightning for multiple tables and indices

90

Special Features

● Sorted Duplicates
– Allows multiple data values for a single key

– Values are stored in sorted order, with customizable
comparison functions

– When the data values are all of a fixed size, the values are
stored contiguously, with no extra headers

● maximizes storage efficiency and performance

– Implemented by the same code as SubDB support
● maximum coding efficiency

– Can be used to efficiently implement inverted indices and sets

91

Special Features

● Atomic Hot Backup
– The entire database can be backed up live

– No need to stop updates while backups run

– The backup runs at the maximum speed of the
target storage medium

– Essentially: write(outfd, map, mapsize);
● No memcpy's in or out of user space
● Pure DMA from the database to the backup

92

(6) Results

● In OpenLDAP slapd
– LMDB reads are 5-20x faster than BDB

– Writes are 2-5x faster than BDB

– Consumes 1/4 as much RAM as BDB

● In MemcacheDB
– LMDB reads are 2-200x faster than BDB

– Writes are 5-900x faster than BDB

– Multi-thread reads are 2-8x faster than pure-memory
Memcached

93

Results

● LMDB has been tested exhaustively by multiple
parties
– Symas has tested on all major filesystems: btrfs, ext2,

ext3, ext4, jfs, ntfs, reiserfs, xfs, zfs

– ext3, ext4, jfs, reiserfs, xfs also tested with external
journalling

– Testing on physical servers, VMs, HDDs, SSDs, PCIe NVM

– Testing crash reliability as well as performance and
efficiency - LMDB is proven corruption-proof in real world
conditions

94

Results

● Microbenchmarks
– In-memory DB with 100M records, 16 byte keys,

100 byte values

95

Results

● Scaling up to 64 CPUs, 64 concurrent readers

96

Results

● Scaling up to 64 CPUs, 64 concurrent readers

97

Results

● Microbenchmarks
– On-disk, 1.6Billion records, 16 byte keys, 96 byte

values, 160GB on disk with 32GB RAM, VM

00:00:00.00

00:28:48.00

00:57:36.00

01:26:24.00

01:55:12.00

02:24:00.00

02:52:48.00

03:21:36.00

03:50:24.00

Load Time

smaller is better

User

Sys

Wall

Ti
m

e

98

Results

● VM with 16 CPU cores, 64 concurrent readers

99

Results

● VM with 16 CPU cores, 64 concurrent readers

100

Results

● Microbenchmark
– On-disk, 384M records, 16 byte keys, 4000 byte

values, 160GB on disk with 32GB RAM

00:00:00.00

00:07:12.00

00:14:24.00

00:21:36.00

00:28:48.00

00:36:00.00

00:43:12.00

Load Time

smaller is better

User

Sys

Wall

Ti
m

e

101

Results

● 16 CPU cores, 64 concurrent readers

102

Results

● 16 CPU cores, 64 concurrent readers

103

Results

● Memcached

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

Read Performance

Single Thread, Log Scale

max

max99th

max95th

max90th

avg

min

m
se

c

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

Write Performance

Single Thread, Log Scale

max

max99th

max95th

max90th

avg

min

m
se

c

104

Results

● Memcached

BDB 5.3 LMDB MemcachedInnoDB
0.01

0.1

1

10

100

1000

10000

Read Performance

4 Threads, Log Scale

max

max99th

max95th

max90th

avg

min

m
se

c

BDB 5.3 LMDB Memcached InnoDB
0.01

0.1

1

10

100

1000

Write Performance

4 Threads, Log Scale

max

max99th

max95th

max90th

avg

min

m
se

c

105

Results

● HyperDex/YCSB

106

Results

● HyperDex/YCSB

LMDB LevelDB
0.1

1

10

100

1000

10000

100000

Latency

Sequential Insert

Max

99%

95%

Avg

Min
msec

107

Results
● HyperDex/YCSB

108

Results

● HyperDex/YCSB

LMDB update LMDB read LevelDB update LevelDB read
0.1

1

10

100

1000

10000

100000

Latency

Random Update/Read

Max

99%

95%

Avg

Min
msec

109

Results

● An Interview with Armory Technologies CEO Alan Reiner
– JMC For more normal users, who have been frustrated with long

load times. In my testing of the latest beta build, using bitcoin 0.10
and the new headers first format, I’ve seen you optimise the load
time from 3 days, to less than 2 hours now. Well done! Can you talk
us through how you did this?

– AR. It really comes down to the new database engine (LMDB instead
of LevelDB) and really hard [work] by some of our developers to
reshape the architecture and the optimizations of the databases

● http://bitcoinsinireland.com/an-interview-with-armory-
technologies-ceo-alan-reiner/

110

Results

● LDAP Benchmarks - compared to:
– OpenLDAP 2.4 back-mdb and -hdb

– OpenLDAP 2.4 back-mdb on Windows 2012 x64

– OpenDJ 2.4.6, 389DS, ApacheDS 2.0.0-M13

– Latest proprietary servers from CA, Microsoft,
Novell, and Oracle

– Test on a VM with 32GB RAM, 10M entries

111

Results

● LDAP Benchmarks

OL mdb 2.5
OL mdb

OL hdb
OL mdb W64

OpenDJ
389DS

Other #1
Other #2

Other #3
Other #4

AD LDS 2012
ApacheDS

0

5000

10000

15000

20000

25000

30000

35000

40000

LDAP Performance

Search Mixed Search Modify Mixed Mod

O
ps

/s
ec

on
d

112

Results

● Full benchmark reports are available on the
LMDB page
– http://www.symas.com/mdb/

● Supported builds of LMDB-based packages are
available from Symas
– http://www.symas.com/

– OpenLDAP, Cyrus-SASL, Heimdal Kerberos

http://www.symas.com/mdb/
http://www.symas.com/

113

Conclusions

● The combination of memory-mapped operation with MVCC
is extremely potent
– Reduced administrative overhead

● no periodic cleanup / maintenance required
● no particular tuning required

– Reduced developer overhead
● code size and complexity drastically reduced

– Enhanced efficiency
● minimal CPU and I/O use

– allows for longer battery life on mobile devices
– allows for lower electricity/cooling costs in data centers
– allows more work to be done with less hardware

114

